Paper Folding Task

Starting with a square...

- 1. Construct a square with exactly 1/4 the area of the original square.
- 2. Construct a triangle with exactly 1/4 the area of the original square.
- Construct another triangle with exactly 1/4 the area of the original square. This triangle should NOT be congruent to the first triangle.
- 4. Construct a square with exactly 1/2 the area of the original square.

Reflection Questions Paper Folding Task

- 3. I understand what 1/2 and 1/4 mean.
- 4. I know what congruent means.
- 5. I keep trying when a problem is hard.

6. I know mistakes help my brain grow.

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

1 2 3 4 5

Paper Folding Task Solution

- 1. Fold the paper in half by bringing 2 opposite edges together twice.
- 2. Fold the paper in half by bringing 2 opposite corners together twice.
- 3. Fold the paper in half first by bringing opposite edges together, then make a crease between opposite corners.
- 4. Find center as in Step 1.
 Bring all 4 corners into center.

How do you know it's a square? It has 4 equal length sides and 4 right angles.

How do you know it has 1/4 the area? It was divided into 4 equal pieces.

Bowl-A-Fact

Use dice to select 3 random numbers:

Combine these 3 numbers using any mathematical operations to "knock down" the pins below:

Reflection Questions

Bowl-A-Fact

A LOS	No wo	ay	Mayb	e D	efinitely
)			
	\bigvee				\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
 I can add and subtract. 	1	2	3	4	5
2. I know how to multiply.	1	2	3	4	5
3. I know how to divide.	1	2	3	4	5
4. I know how exponents work.	1	2	3	4	5
5. I understand how to find a square root.	1	2	3	4	5
6. I keep trying when a problem is hard.	1	2	3	4	5
7. I know mistakes help my brain grow.	1	2	3	4	5

Bowl-R-Fact Solution

Remind students of the following operations:

Addition: 2 + 6 = 8,

Subtraction: 5 - 1 = 4

Multiplication: $3 \times 2 = 6$

Division: 4 divided by 2 = 4/2 = 2

Exponents: 2 to the power of $3 = 2^3 = 2x2x2 = 8$

Square Root: square root of $4 = \sqrt{4} = 2$

Other helpful tips:

Any number times 1 stays the same.

1 to any power is still 1.

Doubles can become zero through subtraction. Any number to the 0th power is 1.

Ice Cream Task

Imagine an ice cream shop.

If they only served vanilla ice cream, there would only be 1 type of double scoop cone. (vanilla/vanilla)

If they served vanilla and chocolate, there would be 3 types of double scoop cones. (vanilla/vanilla, chocolate/chocolate, vanilla/chocolate)

How many possible double scoop cones would there be if they had 10 flavors?

Reflection Questions Ice Cream Task

Maybe

Definitely

No way

my brain grow.

Ice Cream Task

Solution

Here are a couple different ways of thinking about the ice cream scoop task...

Either way, the solution is:

Note that if the order of the scoops mattered (i.e. if vanilla/chocolate was different from chocolate/ vanilla), then there would be 100 possibilities.

Painted Cube Task

Imagine a cube made up of smaller cubes.

If you had a 5x5x5 cube (a cube with 5 smaller cubes on each edge) and you painted the outside...

- 1. How many of the small cubes would have 3 painted faces?
- 2. How many of the small cubes would have 2 painted faces?
- 3. How many of the small cubes would have I painted face?
- 4. How many of the small cubes would have no painted faces?

Reflection Questions

Painted Cube Task

Painted Cube Task Solution

- 3 painted faces = 8 corners
- 2 painted faces =3 per edge x 12 edges = 36
- 1 painted face = 9 per face x 6 faces = 54

no painted faces = 3x3x3 interior cube = 27 (not shown)

Farmer's Fence Task

Imagine a farmer has 36 pieces of fencing each 1-meter long. How can he make the biggest possible enclosure?

Reflection Questions

Farmer's Fence Task

Farmer's Fence Task Solution

Rectangle

15 m

1 m

Area = 15 m^2

Equilateral Triangle

Area \approx 0.433 x a²

Area \approx 0.433 x 12² \approx 62.35 m²

Square

9 m

 $Area = 81 \text{ m}^2$

9 m

Hexagon

Area \approx 6 x 0.433 x 36

 \approx 93.53 m²

Correct Answer:

36-sided shape

Area of 1 triangle \approx 1/2 x 1 x 0.5/tan(5)

Area of 36-sided shape \approx

36 x 2.86 \approx 102.87 m²

Could also use perimeter (36 m) to estimate radius!

Growing Shapes Task

How do you see the shapes growing?

Case 1:	
Case 2:	
Case 3:	
Case 4:	

How many squares would be in Case 100?

Reflection Questions Growing Shapes Task

Growing Shapes Task

Solution

Bowling Alley Method

Squares are added in a line like pins at a bowling alley

Raindrop Method Squares fall from the sky

Volcano Method

Middle column grows and squares flow like laya

of

For more ideas, see <u>Mathematical Mindsets</u> by Jo Boaler

Case

To solve this problem you could add:

OR you could make a table and notice the pattern:
The number of squares is the Case Number squared.

C 450	<i>#</i> 01
Number	Squares
1	1
2	4
3	4 9
4	16
5	25
:	:
100	10000
n	n ²

Another way to think about it:

Group Work

Roles

Recorder:
Writes down group's ideas and shows
group's work.
Task Manager:
Makes sure everyone stays on task.
Includer:
Makes sure everyone has a chance to
speak and share their thoughts and
ideas.
Understander(s):
Makes sure everyone understands

everyone else's ideas and suggestions.